32 research outputs found

    Spatially-variant noise filtering in magnetic resonance imaging : a consensus-based approach

    Get PDF
    In order to accelerate the acquisition process in multiple-coil Magnetic Resonance scanners, parallel techniques were developed. These techniques reduce the acquisition time via a sub-sampling of the k-space and a reconstruction process. From a signal and noise perspective, the use of a acceleration techniques modify the structure of the noise within the image. In the most common algorithms, like SENSE, the final magnitude image after the reconstruction is known to follow a Rician distribution for each pixel, just like single coil systems. However, the noise is spatially non-stationary, i.e. the variance of noise becomes x-dependent. This effect can also be found in magnitude images due to other processing inside the scanner. In this work we propose a method to adapt well-known noise filtering techniques initially designed to deal with stationary noise to the case of spatially variant Rician noise. The method copes with inaccurate estimates of variant noise patterns in the image, showing its robustness in realistic cases. The method employs a consensus strategy in conjunction with a set of aggregation functions and a penalty function. Multiple possible outputs are generated for each pixel assuming different unknown input parameters. The consensus approach merges them into a unique filtered image. As a filtering technique, we have selected the Linear Minimum Mean Square Error (LMMSE) estimator for Rician data, which has been used to test our methodology due to its simplicity and robustness. Results with synthetic and in vivo data confirm the good behavior of our approach

    Influence of ultrasound speckle tracking strategies for motion and strain estimation

    Get PDF
    Speckle Tracking is one of the most prominent techniques used to estimate the regional movement of the heart based on ultrasound acquisitions. Many different approaches have been proposed, proving their suitability to obtain quantitative and qualitative information regarding myocardial deformation, motion and function assessment. New proposals to improve the basic algorithm usually focus on one of these three steps: (1) the similarity measure between images and the speckle model; (2) the transformation model, i.e. the type of motion considered between images; (3) the optimization strategies, such as the use of different optimization techniques in the transformation step or the inclusion of structural information. While many contributions have shown their good performance independently, it is not always clear how they perform when integrated in a whole pipeline. Every step will have a degree of influence over the following and hence over the final result. Thus, a Speckle Tracking pipeline must be analyzed as a whole when developing novel methods, since improvements in a particular step might be undermined by the choices taken in further steps. This work presents two main contributions: (1) We provide a complete analysis of the influence of the different steps in a Speckle Tracking pipeline over the motion and strain estimation accuracy. (2) The study proposes a methodology for the analysis of Speckle Tracking systems specifically designed to provide an easy and systematic way to include other strategies. We close the analysis with some conclusions and recommendations that can be used as an orientation of the degree of influence of the models for speckle, the transformation models, interpolation schemes and optimization strategies over the estimation of motion features. They can be further use to evaluate and design new strategy into a Speckle Tracking system

    Anisotropic Diffusion Filter with Memory based on Speckle Statistics for Ultrasound Images

    Get PDF
    Ultrasound imaging exhibits considerable difficulties for medical visual inspection and for the development of automatic analysis methods due to speckle, which negatively affects the perception of tissue boundaries and the performance of automatic segmentation methods. With the aim of alleviating the effect of speckle, many filtering techniques are usually considered as a preprocessing step prior to automatic analysis methods or visual inspection. Most of the state-of-the-art filters try to reduce the speckle effect without considering its relevance for the characterization of tissue nature. However, the speckle phenomenon is the inherent response of echo signals in tissues and can provide important features for clinical purposes. This loss of information is even magnified due to the iterative process of some speckle filters, e.g., diffusion filters, which tend to produce over-filtering because of the progressive loss of relevant information for diagnostic purposes during the diffusion process. In this work, we propose an anisotropic diffusion filter with a probabilistic-driven memory mechanism to overcome the over-filtering problem by following a tissue selective philosophy. Specifically, we formulate the memory mechanism as a delay differential equation for the diffusion tensor whose behavior depends on the statistics of the tissues, by accelerating the diffusion process in meaningless regions and including the memory effect in regions where relevant details should be preserved. Results both in synthetic and real US images support the inclusion of the probabilistic memory mechanism for maintaining clinical relevant structures, which are removed by the state-of-the-art filters

    Derivation of a test statistic for emphysema quantification

    Get PDF
    Density masking is the de-facto quantitative imaging phenotype for emphysema that is widely used by the clinical community. Density masking defines the burden of emphysema by a fixed threshold, usually between -910 HU and -950 HU, that has been experimentally validated with histology. In this work, we formalized emphysema quantification by means of statistical inference. We show that a non-central Gamma is a good approximation for the local distribution of image intensities for normal and emphysema tissue. We then propose a test statistic in terms of the sample mean of a truncated noncentral Gamma random variable. Our results show that this approach is well-suited for the detection of emphysema and superior to standard density masking. The statistical method was tested in a dataset of 1337 samples obtained from 9 different scanner models in subjects with COPD. Results showed an increase of 17% when compared to the density masking approach, and an overall accuracy of 94.09%

    Non-stationary rician noise estimation in parallel MRI using a single image: A variance-stabilizing approach

    Get PDF
    Parallel magnetic resonance imaging (pMRI) techniques have gained a great importance both in research and clinical communities recently since they considerably accelerate the image acquisition process. However, the image reconstruction algorithms needed to correct the subsampling artifacts affect the nature of noise, i.e., it becomes non-stationary. Some methods have been proposed in the literature dealing with the non-stationary noise in pMRI. However, their performance depends on information not usually available such as multiple acquisitions, receiver noise matrices, sensitivity coil profiles, reconstruction coefficients, or even biophysical models of the data. Besides, some methods show an undesirable granular pattern on the estimates as a side effect of local estimation. Finally, some methods make strong assumptions that just hold in the case of high signal-to-noise ratio (SNR), which limits their usability in real scenarios. We propose a new automatic noise estimation technique for non-stationary Rician noise that overcomes the aforementioned drawbacks. Its effectiveness is due to the derivation of a variance-stabilizing transformation designed to deal with any SNR. The method was compared to the main state-of-the-art methods in synthetic and real scenarios. Numerical results confirm the robustness of the method and its better performance for the whole range of SNRs

    Techniques for tracking: Image Registration

    No full text
    The process of finding a suitable deformation, s, in order to align two or more images is a process known as image registration, image fusion, matching, or warping. Image registration is the keystone in a myriad of image analysis tasks, especially important in those methods that involve the combination of various data sources, like in image fusion (functional and structural information), change detection (motion, velocity, and deformation), and multichannel image restoration.Registration is also being increasingly used in healthcare to estimate parameters for diagnosis purposes. For example, heart regional motion analysis has proved to be of major importance for the study of cardiac abnormal behavior. It currently plays an indisputable role in treatment and diagnosis of different cardiac pathologies, such as mitral regurgitation [1, 2], ischemia [3], dyssynchrony [4], myocardial quantification [5, 6, 7, 8] and diastolic dysfunction [9]. The analysis of the motion is usually done with registration techniques. There are different imaging modalities used to estimate different regional motion features, dominant among them those based on ultrasound (US) acquisitions. Indeed, echocardiography has become a widely used tool for motion and strain estimation due to low cost and real time acquisition. This chapter is focused on those image registration techniques that estimate themotion and strain by tracking the speckle pattern directly from the intensity of the BmodeUS images. Thus, we leave aside the registration of multimodal images or thegeneration of wide-view US images from acquisitions with different fields of view.Besides, we assume a temporal relationship between images.Fil: Curiale, Ariel Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Vegas Sánchez Ferrero, Gonzalo. Harvard Medical School; Estados UnidosFil: Aja Fernandez, Santiago. Universidad de Valladolid; Españ
    corecore